Спинной мозг, его строение. Функции передних и задних корешков. Рефлекторная и проводниковая функции спинного мозга.


Общая информация

Анатомия спинного мозга отличается от головного продолговатым строением. На латыни орган носит название – medulla spinalis. Представляет он собой утолщенную трубку с небольшим каналом внутри, немного приплюснутую спереди и сзади. Именно такое строение обеспечивает нормальную транспортировку нервных импульсов от главного органа, расположенного в черепной коробке к периферийным структурам нервной системы.

Локально орган расположен в позвоночном канале, где сосредоточены мягкие и костные ткани, нервные окончания, отвечающие за множество функций тела человека. Без нормально работающего спинного мозга не представляется возможным естественное дыхание, пищеварение, сердцебиение, репродуктивная деятельность, любая двигательная активность.

У человека начинает он формироваться примерно на 4 неделе развития внутри утробы матери. Но в каком виде он наблюдается у взрослого человека, он появляется намного позже, сначала это нервная трубка, постепенно развивающаяся в полноценный орган. Заканчивает он свое формирование в течение 2-х лет после появления на свет.

Спинной мозг: характеристика проводниковой и рефлекторной функций. Синдром Броун-Стокса.

Спинной мозг состоит из 31-33 сегментов: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1-3 копчиковых.

Сегмент — это участок спинного мозга, связанный с одной парой передних и парой задних корешков.

Задние

(дорсальные) корешки с/м — центральными отростками афферентных чувствительных нейронов. Тела – в с/м и ч/м нервных узлах (ганглиях).
Передние
— аксонами эфферентных нейронов.

Закон Белла-Мажанди, передние корешки — эфферентными, задние — афферентным.

На поперечном срезе с/м: серое вещество

— скоплением нервных клеток. Его окаймляет
белое вещество
— нервные волокна. Нервные волокна белого вещества формируют дорсальные (задние), боковые и вентральные (передние)
канатики спинного мозга
в составе которых проходят проводящие пути спинного мозга. В задних канатиках проходят восходящие, в передних — нисходящие, а в боковых – как восходящие, так и нисходящие проводящие пути.

В сером веществе различают дорсальные (задние) и вентральные (передние) рога

. Кроме того, в грудных, поясничных и крестцовых сегментах имеются боковые рога.

Все нейроны серого вещества могут быть разделены на три основные группы:

1) вставочные интернейроны- в задних рогах спинного мозга,

2) эфферентные мотонейроны- в передних рогах,

3) эфферентные преганглионарные нейроны вегетативной нервной системы, — в боковых и передних рогах с/м.

Сегмент спинного мозга вместе с иннервируемыми участками тела, называется метамером. Группа мышц, иннервируемых одним сегментом спинного мозга, называется миотомом. Участок кожи, от которого сенсорные сигналы поступают в определенный сегмент спинного мозга, называется дерматомом.

Выделяют три основных функции спинного мозга:

1) рефлекторная,

2) трофическая,

3) проводниковая.

Рефлекторная функция с/м: сегментарная

и
межсегментарная
.

1)Сегментарная с/м заключается в непосредственном регулирующем влиянии эфферентных нейронов спинного мозга на иннервируемые им эффекторы при раздражении рецепторов определенного дерматома.

Рефлексы дуга которых переключается в спинном мозге, называются спинальными. К простейшим спинальным рефлексам относятся сухожильные рефлексы.

В зависимости от локализации рецепторов и нервного центра у человека различают:

Локтевой сгибательный рефлекс — при ударе по сухожилию двухглавой мышцы плеча (в области локтевой ямки) и проявляется в сгибании руки в локтевом суставе. Нервный центр этого рефлекса локализуется в 5-6 шейных сегментах спинного мозга.

Локтевой разгибательный рефлекс — при ударе по сухожилию трехглавой мышцы плеча (в области локтевой ямки) и проявляется в разгибании руки в локтевом суставе. Нервный центр этого рефлекса локализуется в 7-8 шейных сегментах спинного мозга.

Коленный рефлекс — при ударе по сухожилию четырехглавой мышцы бедра ниже коленной чашечки и проявляется в разгибании ноги в коленном суставе. Нервный центр этого рефлекса локализуется во 2-4 поясничных сегментах спинного мозга.

Ахиллов рефлекс — при ударе по пяточному сухожилию и проявляется в сгибании стопы в голеностопном суставе. Нервный центр этого рефлекса локализуется в 1-2 крестцовых сегментах спинного мозга.

В скелетной мышце имеется два видаволоконэкстрафузальные

и
интрафузальные
, которые соединены параллельно.
Интрафузальные м.в. выполняют сенсорную функцию. Они состоят из соединительнотканной капсулы
, в которой расположены проприорецепторы, и
периферических сократительных элементов
.

Схема рефлекторной дуги сухожильного спинального рефлекса

1) интрафузальное мышечное волокно, 2) проприорецептор, 3) афферентный чувствительный нейрон, 4) мотонейрон спинного мозга, 5) экстрафузальные мышечные волокна.

Общее время сухожильного спинального рефлекса невелико, т.к. его рефлекторная дуга является моносинаптической. Она включает в себя быстроадаптирующиеся рецепторы, фазные a-мотонейроны, моторные единицы типа FF и FR.

2)Межсегментарная функция с/м — осуществление межсегментарной интеграции спинальных рефлексов, которая обеспечивается интраспинальными проводящими путями, связывающими между собой различные сегменты спинного мозга.

Трофическая функция с/м — регуляция метаболизма и обеспечение питания тех органов и тканей, которые иннервируются нейронами спинного мозга. Она связана с безимпульсной активностью нейронов, способных синтезировать множество трофотропных БАВ. Эти вещества медленно перемещаются в нервные окончания, откуда выделяются в окружающую ткань.

Проводниковая функция с/м — обеспечение двусторонних связей между спинным и головным мозгом. Она обеспечивается его восходящими и нисходящими проводящими путями – группами нервных волокон.

Восходящие проводниковые пути:

1) Голля и Бурдаха, проводники кожно-механической чувствительности от тактильных рецепторов и проприорецепторов в сенсорные зоны задней центральной извилины КБП. Путь Голля информацию от нижней части тела, а Бурдаха — от верхней.

2) спиноталамический, проводник тактильной, температурной и болевой чувствительности. Этот путь обеспечивает передачу в заднюю центральную извилину информации о качестве раздражителя.

3) спиномозжечковые- от тактильных рецепторов, а также проприорецепторов мышц, сухожилий и суставов в кору мозжечка.

Строение

Локальное расположение спинного мозга вдоль всей спины имеет свои особенности. Такая физиология обеспечивает выполнение органом основных функций. Начинается орган на уровне 1 шейного позвонка, где он мягко перестраивается в головной мозг, но четкого разделения в них нет. В месте стыковки наблюдается перекрест пирамидных путей, отвечающих за двигательную активность конечностей. Заканчивается спинной мозг в районе 2 поясничного позвонка, поэтому по длине он меньше, чем весь позвоночник в целом. Такая особенность позволяет проводить люмбальную пункцию на уровне 3-4 поясничного позвонка, без риска повредить спинной мозг.

В чем особенность строения? Продолговатая трубка имеет спереди и сзади две борозды. Покрыт мозг тремя оболочками:

  • Твердой. Представляет собой ткань надкостницы позвоночного канала, после чего идет эпидуральное пространство и внешний слой твердой оболочки.
  • Паутинной. Тонкая пластинка, не имеющая цвета, которая срастается с твердой оболочкой в области межпозвоночного отверстия. В месте отсутствия сращения располагается субдуральное пространство.
  • Сосудистой. Мягкая оболочка, отделенная от предыдущей, подпаутинным пространством со спинномозговой жидкостью. Примыкает оболочка к спинному мозгу и состоит преимущественно из сосудистых сплетений.

Пространство между ними заполнено спинномозговой жидкостью – ликвором. В центре органа располагается серое вещество. Состоит оно из вставочных и двигательных нейронов. Также в нем находятся два типа рогов: передние, содержащие двигательные нейроны и задние, место, где располагаются вставочные нейроны.

Нет рекламы 1

Внешние характеристики

Внешнее строение спинного мозга во многом повторяет очертания позвоночника, так как структуры подстраиваются под его физиологические изгибы. Наблюдаются два утолщения в районе шеи и нижнего грудного, начале поясничного отелов. Эти места характеризуются как выходы корешков спинномозговых нервов, ответственных за иннервацию рук и ног.

Внешнее строение можно кратко описать следующими характеристиками:

  • Форма – цилиндрическая, приплюснутая с передней и задней стороны.
  • Визуально спинной мозг выглядит как удлиненный «шнур» с отростками.
  • В среднем длина органа составляет 42-44 см, но напрямую зависит от роста человека.
  • Масса составляет 34-38 г, что в 50 раз меньше, чем орган головного отдела.
  • Спереди и сзади проходят две борозды, которые визуально делят орган на две симметричные части.
  • В середине имеется канал, которые в верхней части сообщается с одним из желудочков головного мозга. Книзу центральный канал расширяется, образуя концевой желудочек.

Толщина спинного мозга неравномерная и зависит от того, в каком отделе делается замер. Также выделяют у органа четыре поверхности: две округлых боковые, выпуклая задняя и уплощенная передняя. Наружное строение во многом напоминает внутреннюю часть хребта, так как орган заполняет собой весь канал. Орган надежно защищен костной тканью.

[node:field_similarlink]

Внутреннее строение

Спинной мозг состоит из клеток нервной ткани, которые называются нейроны. Они сосредоточены все ближе к центру, и образуют собой серое вещество. По приблизительным подсчетам ученых всего в органе содержится около 13 миллионов клеток, что во много раз меньше, чем в головном отделе. Серое вещество располагается внутри белого, и если сделать поперечный разрез, то по форме он будет напоминать бабочку. Это особенно хорошо видно на схеме.


Схематичное строение спинного мозга в поперечном разрезе

Такое уникальная анатомия позволяет разделить спинной мозг на несколько структур. Устроен он следующим образом:

  • Передние рога. Отличаются округлой широкой формой и состоят их нейронов, отвечающих за то, чтобы передавать мышцам нервные импульсы. Именно потому, что они выполняют такую задачу, их называют двигательные. Начинаются в передних рогах передние корешки спинномозговых нервов.
  • Задние рога. Отличаются длинной неширокой формой и состоят из промежуточных нейронов. Они носят такое название, благодаря способности принимать поступающие сигналы от чувствительных корешков спинномозговых нервов, по-другому они называются задние корешки.
  • Боковые рога. Имеются только в нижних сегментах органа, и содержат вегетативные ядра, ответственные за расширения зрачков, или функционирование потовых желез.

Физиологическая функция нервных окончаний заключается в передаче сигналов от головного мозга спинному, а также доставка полученных импульсов в обратном направлении. Таким образом обеспечивается взаимосвязь на всех уровнях и участках нервной системы. Нервные волокна объединяются в пучки и имеются по всей длине спинного мозга.

Метамер и сегментарное строение

Каждая часть спинного мозга является составным элементом определенного метамера тела. Причем есть «кусочек» спинного мозга включает в себя участок серого вещества с парой корешков, то метамер включает в себя сам спинномозговой сегмент, мышечное волокно (миотом), участок эпидермиса (дерматом), костную составляющую (склетором), внутренний орган (спланхиотом), подконтрольный этим сегментом. У человека и высших представителей животного мира наблюдается корешковая метамерия – приуроченность спинного мозга к отдельным участкам тела.

Кожные участки тела, состоящие из сенсорных волокон, подходят к соответствующему сегменту спинного мозга, называют дерматомы. Они представляют собой полоски эпидермиса, подконтрольные чувствительными нервными окончаниями корешками. Расположены они по всему телу, и бывают перекрывают друг друга.


Наглядное представление связи кожи и спинного мозга

Миотомами называют группы мышц, получающие моторные волокна от определенных участков мозга. Благодаря изучению и знанию их расположения существенно упрощается процесс поражения и диагностирования поражений спинного мозга. Повреждения определенного сегмента спинного мозга провоцируют чувствительные и двигательные нарушения.


Связь спинного мозга и мышечного волокна

Сегментарное строение

Спинной мозг условно делят на пять отделов, хотя он и представляет собой единое целое. Название каждого напрямую зависит от его расположения в теле. Всего у человека могут наблюдаться 31-33 сегмента, которые состоят из:

  • Шейного участка – включает в себя 8 сегментов.
  • Грудной отдел – 12 сегментов.
  • Поясничный отдел – 5 сегментов.
  • Крестцовый – 5 сегментов.
  • Копчиковый – 1-3 сегмента.

Такое деление позволяет детальнее рассмотреть орган, упростить процесс диагностирования различных патологий.

Нет рекламы 2

Белое и серое вещество

Симметричные половины в разрезе можно подробно разглядеть и заметить переднюю серединную щель, соединительно-тканевую перегородку. Часть, расположенная внутри, более темная и носит название серого вещества (СВ), находится она в более светлой субстанцией – белом веществе (БВ). Больше всего СВ расположено в поясничном отделе, меньше всего наблюдается в грудном. Какие основные функции серого вещества:

  • Передача болевых импульсов.
  • Реагирование на температурные изменения.
  • Замыкание рефлекторных дуг.
  • Получение сведений от мышечной ткани, сухожилий, связок.
  • Образование проводящих путей.

Каково строение белого вещества? Оно состоит из миелиновых, безмиелиновых нервных волокон, кровеносных сосудов и небольшого количества соединительное ткани. Основная его задача заключается в запуске простейших рефлексов, обеспечение связей со скелетными мышцами.

Травмирование спинного мозга и его последствия

Лечение травмы позвоночника и повреждения спинного мозга – довольно длительный и серьезный процесс, который не всегда ведет к полному выздоровлению пациента. Некоторые нарушения проявляются сразу, а некоторые могут развиться через время, возникая как симптомы остеохондроза, межпозвонковых грыж, спровоцировать развитие различных артрозов, стеноза, миелопатии и других заболеваний.

Анатомическое строение спинного мозга

Спинной мозг, также как и головной, несмотря на свою мягкую структуру, является одним из самых защищенных органов человеческого организма. Он покрыт несколькими оболочками (мягкий слой, паутинный и твердый), промежутки заполнены спинномозговой жидкостью. Таким образом, мозг как бы подвешен в жидкой среде на тонких растяжках, что позволяет ему выдерживать физические нагрузки, сотрясения при беге и ходьбе, растяжение и даже удары.

Расположен спинной мозг в спинномозговом канале (сквозном отверстии в позвоночнике) и со всех сторон защищен костными структурами, прочным мышечным и связочным корсетом. Наружная плотная оболочка мозга не касается стенок канала. Между ними существует зазор, называемый эпидуральным пространством, который заполнен жировой тканью, кровеносной сеткой, нервными корешками и спинномозговой жидкостью.

Повредить такую конструкцию довольно сложно, даже практически невозможно при спокойной и размеренной жизни. Поэтому даже сильное травмирование позвоночника обычно обходится без повреждения спинного мозга, хотя и провоцирует развитие хронических дегенеративно-дистрофических процессов.

Последствия повреждения спинного мозга осколками костных тканей позвоночника могут быть самыми различными и зависят от места повреждения (от временного нарушения двигательных возможностей конечностей до полного обездвиживания или летального исхода). Иногда встречаются случаи, когда первоначальные проблемы удается быстро локализировать, а затем включается процесс постепенного отмирания клеток мозга, воспаления, начинается кислородное голодание патологического участка и дальнейшее поражение здоровых клеток.

Причины и последствия травмирования спинного мозга

В повседневной жизни получить травму, приведшую к перелому позвоночника и повреждению спинного мозга, достаточно сложно. Но некоторые экстремальные ситуации могут спровоцировать огромные нагрузки, при которых компенсаторные способности организма недостаточно эффективны.

Дорожно-транспортные происшествия. Именно автомобильные катастрофы чаще всего становятся причиной столь тяжелых повреждений. При этом риску подвергаются не только сами водители, но и пешеходы, оказавшиеся в неподходящее время на месте аварии.

Экстремальные виды спорта. Некоторые люди сознательно подвергают свою жизнь опасности. Это и горнолыжники, скалолазы, велосипедисты, покоряющие горные вершины, роллеры, скейтбордеры, ныряльщики, автогонщики, водители мотоциклов и пр.

Падения с высоты. В этом случае совершенно неважно, с какого расстояния и при каких условиях произошло падение – риск травмирования и получения повреждений одинаков. Падение с лесов на строительных работах или ребяческие прыжки в воду с моста или «тарзанки» могут привести к одинаковым последствиям.

Бытовые травмы и криминальные случаи. В этот раздел попадают травмы, полученные при неудачном падении на льду зимой, со стремянки или обычной лестницы, на скользком полу (такие повреждения больше характерны для людей старшего и пожилого возраста, когда координация движений уже нарушена), а также криминальные истории, когда целостность позвоночника и спинного мозга нарушают ножевые или пулевые ранения.

Полученные во всех вышеперечисленных ситуациях травмы позвоночного столба и спинного мозга могут иметь самые серьезные последствия. Безусловно, легкое повреждение оболочки мозга и истечение спинномозговой жидкости может вызвать некоторые временные нарушения со стороны двигательных возможностей или нервных ощущений, но ничего особо страшного не повлечет.

Гораздо неприятнее, когда патологии роботы мышечных структур и внутренних органов так и не исчезнут или начнут развиваться кифоз, сколиоз, нестабильность позвонков, спондилолистез либо ретролистез, лечение которых нередко требует хирургического вмешательства. Возникновение и лечение невриномы позвоночника в большинстве случаев связывают с травмами позвонков и спинного мозга. В некоторых случаях может запуститься процесс запрограммированной гибели клеток спинного мозга (апоптоз), при котором клинические признаки поражения проявляются по нарастающей.

Полный разрыв позвоночника и спинного мозга на уровне шейного сегмента ведет к мгновенной смерти. Разрыв нижних участков дает шанс человеку на жизнь, так как легкие и сердце способны работать автономно от позвоночника, но двигательная способность тела будет заблокирована на некоторое время спинальным шоком.

Лечение травм спинного мозга

Спинной мозг по-особому реагирует на серьезное повреждение – он отключается (спинальный шок). Еще до недавнего времени врачи не знали, как бороться с синдромами поврежденного участка и выводить пострадавшего из шока. На сегодняшний день подобное состояние достаточно хорошо изучено и через несколько недель пациент приходит в сознание. На протяжении всего времени спинального шока тело подключено к аппаратам интенсивной терапии, поддерживающим дыхание и сердцебиение, а также тонус мышечных соединений.

После прохождения шока человеческое тело условно можно разделить на две половины: выше места травмы – управляемую мозгом и ниже места травмирования – управляемую автономно при помощи медицинского оборудования. Именно нижнюю часть организма и спинного мозга необходимо будет лечить.

При травмировании позвоночника и спинного мозга пострадавшему немедленно оказывают медицинскую помощь. Каждая минута промедления – это еще большее повреждение клеток мозга, их отмирание и необратимые последствия. Срочная операция по удалению осколков и обломков костных структур из спинномозгового канала, восстановление оболочки мозга и декомпрессия нервных корешков дают шанс на более быстрое и качественное дальнейшее восстановление организма.

По окончании экстренного вмешательства, насколько это возможно, врачи восстанавливают кровообращение и фиксируют позвоночник в неподвижном состоянии. Далее пациент несколько недель находится в реанимационном отделении под постоянным наблюдением.

Восстановление после травмы

Восстановительные процессы нервных клеток в спинном мозге начинаются соразмерно с отступлением спинального шока. И только когда пациент придет в полное сознание доктора смогут объективно оценить его состояние и шансы на выздоровление. После окончания реанимационного периода за состоянием больного наблюдают невролог и врач лечащий позвоночник.

В большинстве случаев первоначально даже не поврежденные, а просто близлежащие к травме участки мозга и нервных корешков и соответствующие им органы тела могут работать нестабильно, что проявляется в потере чувствительности кожи или неспособности двигаться. Регенерация нервных клеток и корешков проходит крайне медленно, и лечение больного будет длительным. Через несколько месяцев постепенно начнет возвращаться двигательная способность и чувствительность конечностей, наладится работа и контроль внутренних органов.

Те функции, которые не восстановились после полутора лет лечения, можно считать утерянными навсегда. Но в некоторых случаях происходит регенерация клеток мозга, а человек все равно не способен двигаться или ходить. Это объясняется особенностью организма «забывать» долго неиспользуемую мышечную активность и атрофией самих мышц.

Победить эту проблему помогли специально разработанные электростимуляторы и работа на тренажерах. Они позволяют «разбудить» уснувшие связи, активизировать работу каналов и заставить их функционировать заново. Через некоторое время больной уже сам сможет вставать на ноги и ходить.

Дальнейшая терапия повреждения мозга будет проходить в реабилитационных центрах лечения позвоночника и клиниках мануальной терапии. Физиопроцедуры, массажи, плавание, ЛФК и йога, иглоукалывание и рефлексотерапия помогут быстрее восстановиться организму и здоровью человека.
Автор: К.М.Н., академик РАМТН М.А. Бобырь

Функции

Функциональная анатомия подразумевает, что, являясь частью центральной нервной системы, спинной мозг выполняет рефлекторную и проводниковую функцию. В первом случае орган контролирует выполнение простейших действий на уровне реакций, заключенных в подсознании. Ярким примером является запуск двигательной функции с отдергиванием руки, если поверхность слишком горячая. Делает это конечность раньше, чем сам человек поймет, что произошло. Вторая задача органа заключается в передаче нервных импульсов в головной отдел ЦНС, по восходящим и нисходящим путям движения.


Коротко об основных функциях спинного мозга

Рефлекторная функция

Эта основная функция органа представляет собой ответную реакцию на раздражение извне. Например, появление рефлекторного кашля на попадание в дыхательные пути посторонних предметов и частиц, устранение руки от колючек кактуса или источника опасности. Импульс поступает внутрь спинномозгового канала через двигательные нейроны, они же запускают сокращение мышц. Этот процесс не требует привлечения головного мозга, и моторная реакция происходит без его участия. То есть человек даже не задумывается над своим действием, часто не осознает его.

У детей проверяют врожденные рефлексы после появления на свет. Они обычно заключаются в способности сосать молоко, дышать, дергать ножками. В процессе развития появляются и приобретенные рефлексы, которые помогают выявить врачам корректность функционирования элементов дуги, отдельных сегментов спинного мозга. Проверка проводится в процессе неврологического осмотра. Основной акцент делается на подошвенный рефлекс, коленный и брюшной. Именно они позволяют проверить, насколько здоров человек в тот или иной момент времени.

Проводниковая функция

Лечение миелита спинного мозга

Еще одной важной функцией спинного мозга является проводниковая. Она обеспечивает передачу импульса от кожного покрова, поверхности слизистой, внутреннего органа в головной мозг и в обратном направлении. В качестве «проводника» выступает белое вещество. Именно оно несет информацию о поступающих импульсах снаружи. Благодаря этой способности человек может дать характеристику любому предмету, который его окружает.

Познание мира осуществляется через передачу сведений после прикосновения в головной мозг. Именно благодаря этой функции человек понимает, что предмет скользкий, гладкий, шершавый или мягкий. При потере чувствительности, больной перестает понимать, что перед, ним прикасаясь к предмету. Кроме этого, мозг получает данные о положении тела в пространстве, напряжении мышечной ткани или раздражении болевых рецепторов.

Нет рекламы 3

Строение и функции спинного мозга

Исключительная важность спинного мозга

обусловлена тем, что
он замыкает на себе большинство наших с вами рефлексов и обеспечивает способность передвигаться
.

Спинной мозг человека, как и всех позвоночных животных, находится в
позвоночном канале
. Представляет собой тяж белого цвета длиной 40-45 см, шириной от 1 до 1,5 см и массой около 35 грамм. Вверху спинной мозг переходит в нижний отдел головного мозга – продолговатый мозг, а внизу заканчивается на уровне первого-второго поясничного позвонка.

Спинной мозг не занимает целиком полость позвоночного канала: между стенками канала и мозгом остаётся пространство, заполненное жировой тканью

, кровеносными сосудами, оболочками мозга и
спинномозговой жидкостью
.
Спинномозговая жидкость
омывает спинной мозг и защищает его от толчков.

Снаружи мозг покрыт тремя оболочками

:
твёрдой, паутиннойи мягкой
. На поверхности спинного мозга хорошо различимы две продольные борозды:
передняяи задняя
. Они разделяют его на симметричные половины – левую и правую.

От спинного мозга отходит 31 пара спинномозговых нервов

, которые разделяют его на сегменты. От каждого нерва к задней поверхности отходят задние
корешки
, а от передней к каждому нерву соответственно, передние.

Во внутреннем строении этого отдела центральной нервной системы

хорошо различимы
центральный канал
, заполненный спинномозговой жидкостью и две отличающиеся по цвету части.

В середине, вокруг спинномозгового канала расположено так называемое серое вещество

, которое на поперечном срезе напоминает вид бабочки, а вокруг
– белое
.

Серое вещество

представлено телами нейронов и короткими ветвящимися отростками –
дендритами
.

А белое

состоит из длинных неветвящихся аксонов, которые образуют нервные волокна.

В сером веществе различают передние
и задние рога
, а в грудном отделе и боковые.

Чтобы разобраться, какими нейронами представлено серое и белое вещество спинного мозга, обратимся к строению рефлекторной дуги и направлению прохождения нервного импульса соматического рефлекса.

Итак, по чувствительному нейрону, который входит в спинной мозг в составе задних корешков, нервный импульс

достигает
вставочного нейрона
, который полностью расположен в сером веществе. От него информация передаётся
двигательному нейрону
, тело которого расположено в передних рогах серого вещества, а отростки выходят из спинного мозга в составе передних корешков. Далее нервный импульс поступает в
смешанный спинномозговой нерв
. Так он называется, потому что содержит в себе как чувствительные, так и двигательные нейроны. По смешанному спинномозговому нерву нервный импульс достигает органа-исполнителя.

Функции спинного мозга.

Рефлекторная

. Если мы укололи палец, благодаря сложной системе взаимодействий в организме при непосредственном участии спинного мозга, мы тот час отдёрнем руку.

Значит, рефлекторная функция спинного мозга заключается в том, что на нём замыкаются дуги рефлексов. Следовательно, именно спинной мозг обеспечивает рефлекс.

Проводниковая функция

. Несмотря на то, что спинной мозг обеспечивает множество рефлексов человека, он всё же оказывается подконтрольным другой части центральной нервной системы – головному мозгу.

Если мы пришли в поликлинику сдавать анализ крови, то руку мы при уколе отдёргивать не будем. Дело в том, что информация от рецепторов передаётся не только в спинной мозг, но и далее в головной, который её обрабатывает и в данной ситуации спускает инструкцию затормозить рефлекс спинного мозга на отдёргивание руки.

Таким образом, спинной мозг проводит нервный импульс к головному мозгу и в обратном направлении. Выполняя проводниковую функцию.

Скорость прохождения нервного импульса по дуге соматического рефлекса – до 120 м/с. Это значит, что от пальца до головного мозга и обратно к пальцу нервный импульс промчится примерно за 0,05 секунды. Для сравнения можно привести скорость, с которой мы моргаем. Опускание и поднятие века происходит примерно за 0,4 секунды. То есть в 10 раз медленнее!

Поперечнополосатая (скелетная) мускулатура находится под контролем спинного мозга, поэтому именно он управляет нашими движениями. А при его разрушении, например травме позвоночника, наступает паралич. То есть человек не может двигать какими-либо участками тела, так как разрушаются нервы и нервный импульс не поступает к органам исполнителям – мышцам.

Команда «сокращаться» поступает в орган-исполнитель, но из-за повреждения пути, по которому должен пройти сигнал, он не поступает к месту назначения. Долгое время эта проблема была неразрешимой. Но последние исследования в науке позволили разработать методы возвращения пострадавших в результате травмы позвоночника к активной жизни.

Приведём несколько примеров.

40-летний поляк Дарек Фидыка, который в 2010 году в результате ножевых ран был парализован ниже пояса, теперь в состоянии передвигаться.

Эта операция, первая в мире, была сделана хирургами в Польше в сотрудничестве с лондонскими учёными. Впервые врачам удалось добиться восстановления способности ходить у человека, парализованного в результате травмы позвоночника. В его спинной мозг были пересажены клетки обонятельной нервной ткани, так как она единственная, которая способна регенерировать.

Параллельно естественным методам восстановления спинного мозга используют и искусственные.

Учёные и инженеры из Федеральной политехнической школы Лозанны и швейцарского исследовательского центра NCCR Robotics создали не имеющий аналогов имплантат, который может привести к революции в протезировании. Имплантат позволяет «чинить» повреждения спинного мозга и уже успешно проявил себя в многомесячных опытах на животных. Сейчас исследователи готовятся к опытам на людях.

Устройство представляет собой полосу толщиною в 200 мкм, а это всего 0,2 части миллиметра, из мягкого и растягивающегося силикона, который при деформациях полностью сохраняет способность проводить электричество и химические вещества, необходимые для стимуляции нервов.

Крысы с повреждённым спинным мозгом, над которыми проводились эксперименты, смогли ходить через две недели после имплантации, и носить в себе устройство в течение нескольких месяцев без ущерба тканям.

Традиционные методы лечения повреждения спинного мозга до сего момента были неэффективны, поскольку вживлённые электроды было тяжело точно разместить внутри тканей, к тому же при длительном использовании они тёрлись о ткани и повреждали твёрдую мозговую оболочку.

Эти примеры говорят нам о том, что с каждым годом «ремонтопригодность», нашего организма растёт, а человечество не так быстро, как хотелось бы, но уверенными шагами двигается к бессмертию.

Итог урока. Спинной мозг расположен в позвоночном канале. Спинной мозг покрыт твёрдой, паутинной и мягкой оболочкой. Различают серое и белое вещество спинного мозга. От спинного мозга отходит 31 пара спинномозговых нервов. Нервный импульс входит в спинной мозг через задние корешки и задние рога (по чувствительным нейронам), а выходит через передние рога и передние корешки (по двигательным нейронам). Спинной мозг выполняет рефлекторную и проводниковую функцию.

Какие органы контролирует спинной мозг?

Также важно понимать, какие внутренние органы связаны со спинным мозгом и могут страдать при повреждении определенного участка позвоночника. Определенные спинномозговые сегменты контролируют определенные части тела путем транслирования нервных импульсов и передачи ответных реакций по двигательным нейронам. За что отвечает каждый позвонок наглядно можно увидеть в таблице.

Сегмент спиныПорядковый номер позвонкаПодконтрольные внутренние органы
Шейный3-5Диафрагма
Шейный6-8Суставная ткань верхних конечностей
Грудной1,2, 5-8Мышечная ткань и эпидермис кистей, локтей и предплечья
Грудной2-12Мышцы, кожный покров туловища
Грудной1-11Межреберные мышцы
Грудной1-5Головы, сердце
Грудной5-6Нижняя часть пищевода
Грудной6-10Желудочно-кишечный тракт
Поясничный1-2Простата, паховая область, надпочечники, мочевой пузырь, матка.
Поясничный3-5Мышцы и кожа ног
Крестцовый1-2Мышечная ткань и эпидермис нижних конечностей
Крестцовый3-5Наружные половые органы, рефлекторные центры, дисфункция эрекции и дефекации

Повреждение спинного мозга в конкретном отделе негативно сказывается на работе указанных внутренних органов. В некоторых случаях наблюдается дисфункция прежде, чем обнаружится компрессия или смещение позвонков.

Рефлекторная деятельность спинного мозга

В спинном мозге замыкается огромное количество рефлекторных дуг, с помощью которых регулируются как соматические, так и вегетативные функции организма. К числу наиболее простых рефлекторных реакций относятся сухожильные рефлексы и рефлексы растяжения, вызываемые раздражением рецепторов растяжения той же мышцы, которая развивает рефлекторное сокращение. Центральные окончания афферентных волокон от рецепторов растяжения образуют синапсы непосредственно на мотонейронах без дополнительных переключений на вставочных нейронах. Таким образом, дуга этих рефлексов может иметь моносинаптический характер. Указанное обстоятельство, а также высокая скорость проведения по афферентным волокнам, идущим от мышечных рецепторов и по аксонам α-мотонейронов, обеспечивают короткое время рефлекса (что особенно демонстративно в случае сухожильных рефлексов).

Сухожильные рефлексы легко вызываются с помощью короткого удара по сухожилию и имеют важное диагностическое значение в неврологической практике. Рефлекторная реакция проявляется в виде резкого сокращения мышцы. Особенно выражены сухожильные рефлексы в мышцах разгибателей ноги, таких как четырехглавая мышца бедра (коленный рефлекс) или трехглавая мышца голени (ахиллов рефлекс). Однако сухожильные рефлексы вызываются и в мышцах-сгибателях. На руке они четко проявляются на двуглавой и трехглавой мышцах, на лице — на мышцах нижней челюсти.

Быстрота мышечного сокращения и отсутствие последействия обусловлены способом вызывания сухожильного рефлекса. Адекватным раздражителем для соответствующих рецепторов является растяжение, мышцы. Постукивание по сухожилию растягивает мышцу только на очень краткий срок.

Зато при этом чувствительные к растяжению рецепторы активируются с высокой степенью синхронности.

Поскольку афферентные волокна, идущие в спинной мозг от рецепторов растяжения, представляют собой довольно гомогенную группу по диаметру и скоростям проведения, афферентные импульсы поступают к мотонейронам в виде синхронной волны. В результате мотонейроны отвечают с незначительной временной дисперсией, посылая в двигательный нерв синхронный разряд, вызывающий короткое мышечное подергивание, сходное с ответом мышцы на одиночное электрическое раздражение двигательного нерва.

Совсем иначе характеризуется рефлекс растяжения, возникающий при адекватном раздражении тех же самых мышечных рецепторов. Естественные растяжения обычно прикладываются к мышцам под действием силы тяжести. Так, при стоянии четырехглавая мышца бедра подвергается растяжению из-за тенденции колена сгибаться под влиянием гравитационных сил.

Возникающая в ответ на это растяжение афферентная импульсация характеризуется значительной асинхронностью, так как многочисленные рецепторы растяжения под влиянием постоянной нагрузки генерируют ритмические импульсы, частота которых определяется индивидуальным порогом каждого рецептора. Мотонейроны получают длительные асинхронные импульсы и сами разряжаются асинхронно. В результате этого мышца отвечает плавным длительным сокращением, автоматически противодействующим силе тяжести. Это определяет большое физиологическое значение рефлекса растяжения как механизма поддержания выпрямленной позы или стояния.

Более сложно организованы рефлекторные ответы, выражающиеся в координированном сгибании или разгибании мышц конечности. Сгибательные рефлексы направлены на избежание различных повреждающих воздействий. Поэтому рецептивное поле сгибательного рефлекса достаточно сложно и включает различные рецепторные образования и различные по скорости проведения афферентные пути.

Сгибательный рефлекс возникает при раздражении болевых рецепторов кожи, мышц и внутренних органов. Вовлекаемые при этих раздражениях афферентные волокна имеют широкий спектр скоростей проведения — от миелинизированных волокон группы А До немиелинизированных волокон группы С. Все разнообразные афферентные волокна, импульсация по которым приводит к развитию сгибательного рефлекса, объединяют под названием афферентов сгибательного рефлекса.

Центральное время сгибательного рефлекса довольно продолжительно, что обусловлено его полисинаптическим характером. Сгибательные рефлексы отличаются от собственных рефлексов мышц — миостатических и сухожильных не только большим числом синаптических переключений на пути к мотонейронам, но и вовлечением ряда мышц, координированное сокращение которых обусловливает движение целой конечности.

Одновременно с возбуждением мотонейронов, иннервирующих мышцы-сгибатели, происходит реципрокное торможение мотонейронов мышц-разгибателей.

После декапитации лягушка подвешена за челюсть. На правой стороне перерезаны дорсальные корешки, вследствие чего на этой конечности отсутствует сгибательный тонус.

При достаточно интенсивном раздражении рецепторов задней конечности происходят иррадиация возбуждения и вовлечение в реакцию мышц передней конечности и туловища. При активации мотонейронов противоположной стороны тела наблюдается не сгибание, а разгибание мышц задней конечности — перекрестный разгибательный рефлекс.

К разгибательным рефлексам, кроме уже рассмотренных выше миостатических рефлексов и перекрестного разгибательного рефлекса, относится ряд полисинаптических рефлексов, возникающих при раздражении рецепторов стопы.

Еще более сложный характер имеют ритмические и позные рефлексы, или рефлексы положения. К ритмическим рефлексам у млекопитающих относится чесательный рефлекс. Его аналогом у земноводных является потирательный рефлекс. Ритмические рефлексы характеризуются координированной работой мышц конечностей и туловища, правильным чередованием сгибания и разгибания конечностей наряду с тоническим сокращением приводящих мыши, устанавливающих конечность в определенное положение к кожной поверхности.

Позные рефлексы представляют собой большую группу рефлексов, направленных на поддержание определенной позы, что возможно при наличии определенного мышечного тонуса. Примером позного рефлекса является сгибательный тонический рефлекс, который у лягушки определяет основную позу — сидение. Даже у декапитированной лягушки, подвешанной к штативу, задние конечности всегда несколько согнуты и сгибательный тонус исчезает только после разрушения спинногофиозта или перерезки дорсальных корешков. Различия в тонусе сгибательных мышц особенно отчетливы, если перерезку дорсальных корешков осуществить на одной стороне, оставив другую интактной (рис. 83).

Сгибательный тонический рефлекс наблюдается и у млекопитающих, для которых характерно подогнутое положение конечностей (кролик). В то же время для большинства млекопитающих главное значение для поддержания положения тела играет не сгибательный, а разгибательный рефлекторный тонус.

Ввиду того что особенно важную роль в рефлекторной регуляции разгибательного тонуса играют шейные сегменты спинного мозга, специально выделяют шейные тонические рефлексы положения. Эти рефлексы были впервые описаны голландским физиологом Р. Магнусом (1924).

Рецептивным полем шейных тонических рефлексов являются проприорецепторы мышц шеи и фасций, покрывающих шейный участок позвоночника. Центральная часть рефлекторной дуги имеет полисинаптический характер, т. е. включает вставочные нейроны.

Рефлекторная реакция вовлекает мышцы туловища и конечностей. Кроме спинного мозга, в ней участвуют и моторные ядра мозгового ствола, иннервирующие мышцы глазных яблок.

Шейные тонические рефлексы возникают при поворотах и наклонах головы, что вызывает растяжение мышц шеи и активирует рецептивное поле рефлекса. Рефлексы, которые обычно исследуют у человека, приведены в табл. 5.

Кроме рассмотренных выше рефлексов, которые относятся к категории соматических, так как выражаются в активации скелетных мышц, спинной мозг играет важную роль в рефлекторной регуляции внутренних органов, являясь центром многих висцеральных рефлексов. Эти рефлексы осуществляются при участии расположенных в боковых и вентральных рогах серого вещества преганглионарных нейронов вегетативной нервной системы. Аксоны этих нервных клеток покидают спинной мозг через передние корешки и заканчиваются на клетках симпатических или парасимпатических вегетативных ганглиев. Ганглионарные нейроны в свою очередь посылают аксоны к клеткам различных внутренних органов, включая гладкие мышцы кишечника, сосудов, мочевого пузыря, к железистым клеткам, сердечной мышце.

Опасность повреждения органа

Благодаря характерной особенности строения мозга, он связан с большинством систем в организме. Целостность его структуры крайне важно для корректного функционирования опорно-двигательного аппарата, здоровья внутренних органов. Любая травма, независимо от степени тяжести, может привести к инвалидности. Растяжения, вывихи, повреждения дисков, переломы позвонков со смещением или без могут вызвать спинальный шок и паралич ног, нарушить нормальную работу канатиков.

Тяжелые травмы приводят к появлению шока, длящегося от нескольких часов до нескольких месяцев. При этом патологическое состояние сопровождается рядом неврологических симптомов. К ним относится онемение, нарушение чувствительности, дисфункция тазовых органов, неспособность контролировать процесс мочеиспускания и дефекации.

Лечение легких повреждений позвоночника проводится амбулаторно, с использованием медикаментов, лечебной гимнастики и массажа. Тяжелые травмы требуют оперативного вмешательства, особенно если выявленная компрессия спинного мозга. Клетки быстро повреждаются и погибают, поэтому любое промедление может стоить человеку здоровья. Восстановительный период после такого вмешательства составляет до двух лет. Помогают в этом различные физиотерапевтические процедуры, например, рефлексотерапия, эрготерапия, электрофорез, магнитотерапия и прочее.

Спинной мозг представляет собой ключевой элемент центральной нервной системы человека, который связан тем или иным образом практически со всеми внутренними органами, мышечной тканью человека. Специфическое строение позволяет передавать импульсы и сигналы, обеспечивать полноценную двигательную деятельность, и выполнять ряд других функций.

Участие спинного мозга в регуляции тонуса мышц

Регуляция тонуса мышц имеет рефлекторную природу и осуществляется посредством миотатических и позно-тонических рефлексов.

Миотатический рефлекс является рефлексом растяжения, который начинается с раздражения мышечного веретена. Практически в каждой мышце находятся мышечные рецепторы растяжения, называемые из-за своей формы «мышечными веретенами» (рис.2).

Мышечный рецептор состоит из поперечнополосатых интрафузальных мышечных волокон, окруженных соединительнотканной капсулой, и имеет форму веретена. Длина интрафузальных мышечных волокон равна 4 — 7 мм, толщина 15 — 30 мкм. Мышечные веретена располагаются параллельно скелетной мышце и своими концами крепятся к соединительнотканной оболочке пучка экстрафузальных мышечных волокон при помощи напоминающих сухожилия полосок соединительной ткани длиной 0,5 — 1 мм.

Механизм регуляции тонуса мышц представлен на рисунке 2. Растяжение экстрафузальных мышечных волокон (при расслаблении поперечно-полосатых мышечных волокон) приводит к растяжению мышечного веретена. При растяжении мышечного веретена происходит растяжение ядерной сумки и возбуждение рецептора растяжения. Импульсы поступают в спинной мозг к α-мотонейронам. Возбуждение по аксонам α-мотонейронов вызывает сокращение экстрафузальнох мышечных волокон.

Рис.2. Схема регуляции мышечного тонуса.

1 – экстрафузальные волокна; 2 – мышечное веретено; 3 – интрафузальные

волокна; 4 – эфферентные нервные волокна; 5 – альфа-мотонейроны;

6 – гамма-мотонейроны

Гамма-петля:

Ряд воздействий от рецепторов мышц и сухожилий идет не только на α-мотонейроны, но и по коллатерали аксона на γ-мотонейроны: γ-мотонейроны возбуждаются → посылают импульсы к интрафузальным волокнам → интрафузальные волокна сокращаются → мышечное веретено растягивается → рецептор возбуждается → импульсы идут в спинной мозг → активация α-мотонейронов → сокращение экстрафузальных волокон.

Шейные позно-тонические рефлексы

спинного мозга направлены на поддержание позы. С их помощью регулируется тонус мышц. Эти рефлексы возникают с проприорецепторов мышц и фасций шеи. Переключение с этих рецепторов осуществляется на уровне шейного отдела спинного мозга и приводит к изменению тонуса мышц при изменении положения головы и шеи.

Сегментарный и межсегментарный принцип

Работы спинного мозга

Спинной мозг состоит из 31-32 сегментов. Каждому сегменту соответствуют две пары корешков (соответственно числу сегментов из спинного мозга выходит 31-32 пара передних двигательных корешков и входит в него 31-32 пары задних чувствительных корешков). При проекции сегментов спинного мозга на позвонки приходится учитывать несоответствие длины спинного мозга и позвоночника. В шейном отделе сегменты расположены на 1 позвонок выше, чем соответствующий им по счету позвонок; верхнегрудные – на 2, нижнегрудные – на 3 (пример: V шейный сегмент расположен на уровне IV шейного позвонка, V грудной – на уровне III грудного позвонка, XI грудной – на уровне VIII грудного позвонка и т.д.). В большом несоответствии находятся поясничные и крестцовые сегменты и позвонки: поясничные сегменты находятся на уровне X, XI, и XII грудных позвонков; крестцовые – XII грудного и I поясничного. Морфологических границ между сегментами спинного мозга нет, поэтому деление на сегменты является функциональным и определяется зоной распределения в сегменте волокон заднего корешка и зоной клеток, которые образуют передний корешок. Часть тела, иннервируется волокнами одного сегмента, называется метамер (участок кожи, иннервированные чувствительными волокнами сегмента, называется дерматом). Каждый сегмент иннервирует через свой метамер. Это сегментарный принцип работы спинного мозга. Межсегментарный принцип работы спинного мозга заключается в том, что каждый сегмент спинного мозга иннервирует не только свой метамер, но и метамеры выше- и нижележащих соседних сегментов. В итоге перекрытия нервных волокон каждый метамер тела иннервируется тремя сегментами и передает сигналы в 3 сегмента спинного мозга, что повышает надежность регуляторных механизмов.

Структурная организация и функции продолговатого мозга

Продолговатый мозг является продолжением спинного мозга и имеет длину около 25 мм. В отличие от спинного мозга его серое вещество расположено не в центре, а на периферии в виде ядер.

В продолговатом мозге располагаются ядра VIII-XII пар черепно-мозговых нервов через которые осуществляется регуляция чувствительных (сенсорных), двигательных (соматических) и вегетативных (парасимпатических) функций: чувствительные ядра преддверно-улиткового нерва (n.vestibulocochlearis, VIII), ядра языкоглоточного нерва (n. glossopharyngeus, IX), ядра блуждающего нерва (n. vagus, X), двигательное ядро добавочного нерва (n. accessorius, XI), двигательное ядро подъязычного нерва (n. hypoglossus, XII). Кроме того в РФ продолговатого мозга располагаются вестибулярные ядра (медиальное – ядро Швальбе, верхнее – ядро Бехтерева, латеральное – ядро Дейтерса и нижнее – ядро Роллера), к которым поступают импульсы от рецепторов полукружных каналов.

Функции продолговатого мозга

Продолговатый мозг выполняет сенсорные, проводниковые и рефлекторные функции.

Сенсорные функции

осуществляются за счет поступления в продолговатый мозг афферентной информации от рецепторов вкуса, слуховых и вестибулярных рецепторов по чувствительным волокнам к ядрам соответствующих черепно-мозговых нервов и от рецепторов органов грудной и брюшной полости (см.выше). На уровне продолговатого мозга производится первичный анализ силы и качества раздражителя.

Проводниковые функции

. Через продолговатый мозг проходят все восходящие и нисходящие пути спинного мозга. Здесь находятся перекресты нисходящих пирамидных путей и восходящего тракта Голля и Бурдаха.

Рефлекторные функции

. В продолговатом мозге локализованы центры многочисленных рефлексов. Например, ряд защитных рефлексов:
рвотный рефлекс
(от рецепторов корня языка, глотки, желудка, кишечника, брюшины, вестибулярного аппарата → по волокнам языкоглоточного, блуждающего или вестибулярного нерва → в рвотный центр продолговатого мозга → по эфферентному волокну блуждающего нерва к пищеводу, желудку, кишечнику и через спинальные моторные центры к диафрагме и мышцам брюшной стенки);
кашлевой рефлекс
(от рецепторов гортани, трахеи и бронхов → по чувствительным волокнам блуждающего нерва → в кашлевой центр продолговатого мозга → эфферентные импульсы к спинальным центрам дыхательной мускулатуры);
рефлекс чиханья
(от рецепторов полости носа → в центр чиханья продолговатого мозга → эфферентные импульсы к спинальным центрам дыхательной мускулатуры), а также
рефлексы слезоотделения, смыкания век.
Также продолговатый мозг вместе с другими структурами ствола мозга участвует в осуществлении
рефлексов поддержания позы (вестибулярных позно-тонических рефлексов).
В продолговатом мозге кроме центров защитных рефлексов в области ретикулярной формации находятся жизненно важные центры – сосудодвигательный и дыхательный центры.

Особенности структурной организации ретикулярной формации

ствола мозга

Ретикулярная формация (РФ) располагается в сером веществе продолговатого мозга, среднего мозга, промежуточного мозга, частично спинного мозга и регулирует уровень активности коры головного мозга, мозжечка, таламуса, спинного мозга. РФ образована нейронами, которые имеют длинные маловетвящиеся дендриты и короткий хорошо ветвящийся аксон. Морфологическое строение ретикулярной формации очень напоминает сеточку, и именно по этому признаку немецкий анатом Отто Дейтерс назвал эту структуру «ретикулярная формация» (лат. reticulum — сеточка, formatio — образование) (1865). Нейроны РФ получают информацию от разных рецепторов. Это полимодальные нейроны, имеющие большие рецептивные поля, обладают спонтанной активностью, повышенной возбудимостью, высокой лабильностью (до 1000 имп/сек), высокой чувствительностью к метаболитам, гормонам, барбитуратам и другим фармакологическим препаратам.

Нейрофизиология сенсорных путей спинного мозга

1. Дорсальные (задние) столбы спинного мозга представляют собой мощную систему волокон различного происхождения (рис. 6.21). Задние столбы у наземных млекопитающих в эволюции формируются в связи с развитием конечностей, когда возникает необходимость в тонком анализе информации от суставов и кожи, без которого невозможны ходьба, бег, прыжки, удержание равновесия и положения тела в пространстве. Прогрессивное развитие задних столбов в эволюции позвоночных животных тесно связано с развитием соматосенсорной коры больших полушарий.

Волокна задних корешков, войдя в спинной мозг, делятся на две веточки: длинную (восходящую) и короткую (нисходящую). Ядер задних столбов (нежного и клиновидного) в продолговатом мозге достигают лишь около четверти миелинизированных волокон, остальные аксоны оканчиваются на интернейронах спинного мозга.


Схема основных восходящих путей спинного мозга

Аксоны нейронов ядер задних столбов (нежного и клиновидного) перекрещиваются и образуют медиальные лемниски, которые направляются к ядрам вентробазального таламуса. Волокна, составляющие задние столбы в спинном мозге, постепенно истончаются, так как по ходу отдают большое число коллатералей к интернейронам спинного мозга, поэтому скорость проведения импульсов снижается с 90-120 м/с – в месте вхождения в спинной мозг до 20-40 м/с на уровне шейных верхних сегментов спинного мозга.

В системе волокон задних столбов проходят афференты от многих типов рецепторов, в частности у животных – от рецепторов волосяных луковиц, суставов, подушечек лап, основания когтей и других образований. Мышечные афференты от конечностей также восходят в составе задних столбов и заканчиваются на нейронах ядер продолговатого мозга, а также на нейронах дорсального рога шейных верхних сегментов спинного мозга. Аксоны этих нейронов 2-го порядка перекрещиваются и присоединяются к волокнам медиального лемниска, которые, переключаясь через ядра вентробазального комплекса, проецируются на кору больших полушарий на границе сенсорной и моторной зон (поле За, по Бродману). Значительная часть афферентных волокон от мышечных и сухожильных рецепторов не входит в состав задних столбов. Эти волокна, начиная с поясничных сегментов спинного мозга и выше, переключаются на нейронах кларковых столбов, аксоны которых образуют мощные сенсорные тракты к мозжечку.

Суставные сумки и поверхности суставов имеют многообразные рецепторы, которые объединяются под общим названием суставные рецепторы. Согласно современным данным, в суставном нерве выделяют два типа ответов: быстро адаптирующиеся и медленно адаптирующиеся, последние более многочисленны. Соответственно этому выделяют два типа рецепторов. Медленно адаптирующиеся рецепторы, являясь наиболее типичными суставными рецепторами, сообщают о положении костей, образующих данный сустав. В суставных нервах обнаруживаются волокна, в которых разряды возникают как при сгибании, так и при разгибании сустава. Обнаружены также волокна, разряд которых в зависимости от сгибания или разгибания сустава, учащается или урежается (дирекционно-чувствительные ответы). Одно и то же движение сустава может вызвать урежение импульсации в одном афферентном волокне и увеличение ее в другом волокне. Информация от суставных рецепторов в супраспинальные центры проводится по системе волокон задних столбов.

Волокна задних столбов проводят также афферентные сигналы от внутренних органов. Импульсы от тазового нерва достигают надсегментарных структур не только по задним канатикам (задним столбам), но также и по вентролатеральным канатикам, в составе спиноталамических трактов спинного мозга. Скорость проведения импульсов от внутренних органов в задних столбах, например, кошки составляет 35-75 м/с, в вентральных-21-38 м/с и латеральных-17-32 м/с.

2. Спиноцервикальный тракт образован аксонами нейронов, тела которых находятся в основании серого вещества дорсального рога спинного мозга (см. рис. 6.21). Далее волокна тракта проходят ипсилатерально в составе латерального канатика и оканчиваются на нейронах шейного латерального ядра, локализованного в верхних сегментах шейного отдела серого вещества задних рогов спинного мозга. На этом же уровне аксоны нейронов этого ядра перекрещиваются и в составе специальной порции медиального лемниска направляются в вентробазальный комплекс таламических ядер.

Известно, что шейное латеральное ядро у человека представлено рассеянными клетками в шейных сегментах спинного мозга. У кошки, собаки, низших обезьян это ядро развито очень хорошо. На нейронах спиноцервикального тракта конвергирует возбуждение от низкопороговых кожных рецепторов, в том числе от рецепторов волосяных луковиц. Ряд нейронов возбуждается при пощипывании или давлении на кожу; размер их рецептивных полей может быть большим и занимать даже всю ипсилатеральную половину тела. Несмотря на большее количество переключений (спинальный уровень, шейное латеральное ядро, вентробазальный таламус, кора больших полушарий), возбуждение по спиноцервикальному тракту прибывает в кору больших полушарий на 2-5 мс быстрее, чем по волокнам дорсальных столбов. Это объясняется тем, что скорость проведения по волокнам задних столбов меньше, чем по волокнам спиноцервикального тракта.

У млекопитающих (в том числе и у человека) по дорсальным столбам и спиноцервикальному тракту (у человека преимущественно по дорсальным столбам) в постцентральной коре больших полушарий организуется проекция всего тела (рис. 6.22). При этом соблюдается следующий принцип: чем выше плотность рецепторов в коже, покрывающей соответствующую часть тела, тем большей площадью эта проекция представлена в коре больших полушарий. Обратите внимание на то, что руки, особенно большой палец, оральная область, в том числе язык, голосовые связки и пр. представлены в коре мозга человека особенно подробно.


Сенсорное представительство тела в сенсорных полях коры больших полушарий

3. Спиноталамический тракт составляют самые тонкие миелинизированные афференты (диаметром до 6 мкм), а также немиелинизированные волокна задних корешков. Они входят в серое вещество спинного мозга и заканчиваются на нейронах основания серого вещества заднего рога. В сером веществе спинного мозга аксоны части этих нейронов перекрещиваются, а другая часть идет ипсилатерально, образуя спиноталамический тракт. Таким образом, спиноталамический тракт проецируется в ядра таламуса (вентральное заднелатеральное, парафасцикулярное и центральное латеральное ядра) билатерально. Часть нервных волокон тракта переключается на нейронах мозгового ствола, аксоны части этих нейронов переходят на контралатеральную сторону и также направляются в таламус.

По волокнам спиноталамического тракта передается информация о боли, давлении и температуре. Нейроны этого тракта имеют обширные кожные рецептивные поля, располагающиеся у некоторых нейронов билатерально, покрывая обе задние или обе передние конечности, а иногда даже всю поверхность тела. Нейроны, активируемые при раздражении одной конечности, как правило, тормозятся при стимуляции другой, тогда как нейроны с ограниченными кожными рецептивными полями часто тормозятся с окружающей кожной поверхности. В настоящее время считают, что этот тракт проводит генерализованные ощущения и по нему передается информация только о качестве раздражителя и его грубой локализации.

Таким образом, в таламус проецируются две системы: задние столбы (у ряда видов млекопитающих также спиноцервикальная система) и спиноталамический тракт. Эти две системы различаются функционально: первая проводит информацию о месте и модальности раздражителя (протопатическая чувствительность), тогда как вторая обеспечивает генерализованные формы ощущения (эпикритическая чувствительность).

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]