Афферентные и эфферентные, нервные проводники, роль этих нейронов в психологии


Понятие и разновидности нейронов

Определение 1 Нейрон – это электрически возбудимая клетка, функциональная единица нервной системы.
Любой нейрон содержит клеточное труп, дендриты и аксон. Нейроны распределяются на 3 облика:

  • афферентные нейроны,
  • эфферентные нейроны,
  • интернейроны.

Воспринимающяя сведения переходит с провинции туловища ко главному органу — разуму. Воспринимающяя сведения включает нервные импульсы (данное эти запас, какие индивид ощущает, чувствует, касается, лицезреет, ощущает их запах, ощущает в привкус), какие переходят органами чувств. Центростремительные нейроны еще обладают название воспринимающие нейроны, данное эти клетки, какие совершают передачу импульсов с туловища ко основной нервной концепции. Стимулы физиологические, шум также освещение, активизируют центростремительные нейроны, преобразовывая субъективности во нервные импульсы. Они делают данное, применяя рецепторные нейроны, находящиеся во их межклетных слоях. Основные биохимические туловища центростремительных нейронов пребывают рядом ведущего также дорсального мозга, какие во взаимосвязи совершают основную нервную концепцию. Клеточки передающих нейронов пребывают во основной нервной концепции также зовутся движковыми нейронами. Приобретя сведения с различных нейронов, включая центростремительные нейроны также интернейроны, передающие нейроны получают данные импульсы с основной нервной концепции также передадут нервные импульсы периферической нервной концепции, мускулам также железам, чтобы стимулировать отклик в возбудитель.

Эфферентные (центробежные) нервные волокна

Рефлекс — стереотипная реакция организма в ответ на раздражитель, реализуемая с помощью нервной системы. Вызывающие рефлексы раздражители могут иметь как физическую (механические, электрические, температурные, звуковые, световые и т. п. раздражители), так и химическую природу. Структурной основой рефлекса является рефлекторная дуга, представляющая собой совокупность морфологически взаимосвязанных образований, обеспечивающих восприятие, передачу и переработку сигналов, необходимых для реализации рефлекса.

Безусловный рефлекс.

1>2>3>4>5>6>7

1 Стимул — раздражение рецепторов

2 Рецепторами называют специализированные образования, предназначенные для восприятия клетками или нервной системой различных по своей природе стимулов или раздражителей. Различают два типа рецепторов — сенсорные, т. е. обеспечивающие восприятие нервной системой различных раздражителей внешней или внутренней среды, и клеточные химические рецепторы — специальные структуры мембран, обеспечивающие восприятие информации, переносимой молекулами химических веществ — медиаторов, гормонов, антигенов и т.п.

3 Афферентные (центростремительные) нервные волокна — нервные волокна (отростки нервных клеток ), которые проводят чувствительные импульсы от всех тканей и органов тела к ЦНС . Афферентные нервные волокна (лат. afferens, приносящий) — центростремительные нервные волокна — нервные волокна (отростки нервных клеток), по которым возбуждение передается от тканей к центральной нервной системе. При действии стимулов (влияний среды на органы чувств) в рецепторах возникают потенциалы, которые вызывают возбуждение афферентных сенсорных нервных волокон которое дальше передается в центральную нервную систему . В желудочках сердца расположены рецепторы растяжения . Афферентные волокна от них идут в составе блуждающих нервов . Афферентные волокна от рецепторов растяжения легких также идут в составе блуждающих нервов . Нервные структуры, ответственные за регуляцию водно-солевого баланса , локализованы в промежуточном мозге , особенно в гипоталамусе и соседних областях. Во фронтальной части гипоталамуса расположены многочисленные осморецепторы , которые активируются повышением внутриклеточной концентрации солей при утрате клетками воды и служат чувствительным аппаратом жажды. Кроме того, предполагают, что рецепторы растяжения в стенках крупных вен вблизи сердца также участвуют в регуляции водного баланса и возникновения ощущения жажды при потере воды из внеклеточного пространства. Гипоталамус является важным центром передачи информации от афферентных волокон блуждающего нерва , связанных с рецепторами растяжения, в центральную нервную систему .

4 Нервный центр — это совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции определенной функции.

Основными клеточными элементами нервного центра являются многочисленные нейроны, скопление которых формирует нервные ядра. В состав центра могут входить нейроны, рассеянные за пределами ядер. Нервный центр может быть представлен структурами мозга, располагающимися на нескольких уровнях центральной нервной системы (например, центры регуляции дыхания, кровообращения, пищеварения).

Любой нервный центр состоит из ядра и периферии.

Ядерная часть нервного центра представляет собой функциональное объединение нейронов, в которое поступает основная информация от афферентных путей. Повреждение этого участка нервного центра приводит к повреждению или существенному нарушению осуществления данной функции.

Периферическая часть нервного центра получает небольшую порцию афферентной информации, и ее повреждение вызывает ограничение или уменьшение объема выполняемой функции

(рис. 1).

Рис. 1. Схема общего строения нервного центра

Функционирование центральной нервной системы осуществляется благодаря деятельности значительного числа нервных центров, представляющих собой ансамбли нервных клеток, объединенных с помощью синаптических контактов и отличающихся огромным разнообразием и сложностью внутренних и внешних связей.

В нервных центрах выделяют следующие иерархические отделы: рабочие, регуляторные и исполнительные (рис. 2).

Рис. 2. Схема иерархического подчинения разных отделов нервных центров

Рабочий отдел нервного центра ответствен за осуществление данной функции. Например, рабочий отдел дыхательного центра представлен центрами вдоха, выдоха и пневмотаксиса, расположенными в продолговатом мозге и варолиевом мосту; нарушение этого отдела вызывает остановку дыхания.

Регуляторный отдел нервного центра — это центр, расположенный в коре больших полушарий мозга и регулирующий активность рабочего отдела нервного центра. В свою очередь, активность регуляторного отдела нервного центра зависит от состояния рабочего отдела, который получает афферентную информацию, и от внешних стимулов среды. Так, регуляторный отдел дыхательного центра расположен в лобной доле коры больших полушарий и позволяет произвольно регулировать легочную вентиляцию (глубину и частоту дыхания). Однако эта произвольная регуляция небезгранична и зависит от функциональной активности рабочего отдела, афферентной им пульсации, отражающей состояние внутренней среды (в данном случае рН крови, концентрации углекислого газа и кислорода в крови).

Исполнительный отдел нервного центра — это двигательный центр, расположенный в спинном мозге и передающий информацию от рабочего отдела нервного центра к рабочим органам. Исполнительный отдел дыхательного нервного центра расположен в передних рогах грудного отдела спинного мозга и транслирует приказы рабочего центра к дыхательным мышцам.

С другой стороны, одни и те же нейроны головного и спинного мозга могут участвовать в регуляции разных функций. Например, клетки центра глотания участвуют в регуляции не только акта глотания, но и акта рвоты. Этот центр обеспечивает все последовательные стадии акта глотания: движение мышц языка, сокращение мышц мягкого неба и его поднятие, последующее сокращение мышц глотки и пищевода при прохождении пищевого комка. Эти же нервные клетки обеспечивают сокращение мышц мягкого нёба и его поднятие во время акта рвоты. Следовательно, одни и те же нервные клетки входят и в центр глотания, и в центр рвоты.

Свойства нервных центров

Свойства нервных центров зависят от их строения и механизмов передачи возбуждения в синапсах. Выделяются следующие свойства нервных центров:

  • Односторонность проведения возбуждения
  • Синаптическая задержка
  • Суммация возбуждения
  • Трансформация ритма
  • Утомляемость
  • Конвергенция
  • Дивергенция
  • Иррадиация возбуждения
  • Концентрация возбуждения
  • Тонус
  • Пластичность
  • Облегчение
  • Окклюзия
  • Реверберация
  • Пролонгирование

Одностороннее проведение возбуждение в нервном центре. Возбуждение в ЦНС проводится в одном направлении с аксона на дендрит или тело клетки следующего нейрона. Основу этого свойства составляют особенности морфологической связи между нейронами.

Одностороннее проведение возбуждения зависит от строения синапса и гуморальной природы передачи в нем импульса: медиатор, осуществляющий передачу возбуждения, выделяется только в пресинаптическом окончании, а рецепторы, воспринимающие медиатор, расположены на постсинаптической мембране;

Замедление проведения возбуждения (центральная задержка). В системе рефлекторной дуги медленнее всего проводится возбуждение в синапсах ЦНС. В связи с этим центральное время рефлекса зависит от количества вставочных нейронов.

Чем сложнее рефлекторная реакция, тем больше центральное время рефлекса. Его величина связана со сравнительно медленным проведением возбуждения через последовательно включенные синапсы. Замедление проведения возбуждения создается вследствие относительной длительности осуществляющихся в синапсах процессов: выделения медиатора через пресинаптическую мембрану, его диффузии через синаптическую щель, возбуждения постсинаптической мембраны, возникновения возбуждающего постсинаптического потенциала и его перехода в потенциал действия;

Трансформация ритма возбуждения. Нервные центры способны изменять ритм поступающих к ним импульсов. Они могут отвечать на одиночные раздражители серией импульсов или на раздражители небольшой частоты — возникновением более частых потенциалов действия. В результате ЦНС посылает к рабочему органу количество импульсов, относительно независимое от частоты раздражений.

Это связано с тем, что нейрон является изолированной единицей нервной системы, к нему в каждый момент приходит множество раздражений. Под их влиянием происходит изменение мембранного потенциала клетки. Если создается небольшая, но продолжительная деполяризация (длительный возбуждающий постсинаптический потенциал), то один стимул вызывает серию импульсов (рис. 3);

Рис. 3. Схема трансформации ритма возбуждения

Последействие — способность сохранять возбуждение после окончания действия раздражителя, т.е. афферентных импульсов нет, а эфферентные продолжают действовать еще некоторое время.

Последействие объясняется наличием следовой деполяризации. Если следовая деполяризация длительна, то на ее фоне в течение нескольких миллисекунд могут возникать потенциалы действия (ритмическая активность нейрона), вследствие чего сохраняется ответная реакция. Но это дает сравнительно короткий эффект последействия.

Более длительное последействие связано с наличием кольцевых связей между нейронами. В них возбуждение как бы само себя поддерживает, возвращаясь по коллатералям к первоначально возбужденному нейрону (рис. 4);

Рис. 4. Схема кольцевых связей в нервном центре (по Лоренто де Но): 1 — афферентный путь; 2-промежуточные нейроны; 3 — эфферентный нейрон; 4 — эфферентный путь; 5 — возвратная ветвь аксона

Облегчение проведения или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект, или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название «облегчение».

Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации возбуждающего постсинаптического потенциала быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия (рис. 5);

Рис. 5. Схема облегчения проведения

Суммация , впервые описанная И.М. Сеченовым (1863) и заключающаяся в том, что слабые по силе раздражители, не вызывающие видимой реакции, при частом повторении могут суммироваться, создавать надпороговую силу и вызывать эффект возбуждения. Различают два вида суммации — последовательную и пространственную.

  • Последовательная суммация в синапсах возникает в том случае, когда по одному и тому же афферентному пути к центрам поступает несколько подпороговых импульсов. В результате суммации местного возбуждения, вызванного каждым подпороговым стимулом, возникает ответная реакция.
  • Пространственная суммация заключается в появлении рефлекторной реакции в ответ на два или несколько подпороговых стимулов, приходящих в нервный центр по разным афферентным путям (рис. 6);

Рис. 6. Свойство нервного центра — суммация пространственная (Б) и последовательная (А)

Пространственную суммацию, как и последовательную, можно объяснить тем, что при подпороговом раздражении, пришедшем по одному афферентному пути, выделяется недостаточное количество медиатора для того, чтобы вызвать деполяризацию мембраны до критического уровня. Если же импульсы приходят одновременно несколькими афферентными путями к одному и тому же нейрону, в синапсах выделяется достаточное количество медиатора, необходимое для пороговой деполяризации и возникновения потенциала действия;

Иррадиация. При возбуждении нервного центра нервные импульсы распространяются на соседние центры и приводят их в деятельное состояние. Это явление получило название иррадиации. Степень иррадиации зависит от количества вставочных нейронов, степени их миелинизации, силы раздражителя. Со временем в результате афферентной стимуляции только одного нервного центра зона иррадиации уменьшается, происходит переход к процессу концентрации, т.е. ограничению возбуждения только в одном нервном центре. Это является следствием уменьшения синтеза медиаторов во вставочных нейронах, в результате чего биотоки не передаются из данного нервного центра на соседние (рис. 7 и 8).

Рис. 7. Процесс иррадиации возбуждения в нервных центрах: 1, 2, 3 — нервные центры

Рис. 8. Процесс концентрации возбуждения в нервном центре

Выражением данного процесса является точная координированная двигательная реакция в ответ на раздражение рецептивного поля. Формирование любых навыков (трудовых, спортивных и т.д.) обусловлено тренировкой двигательных центров, основу которых составляет переход от процесса иррадиации к концентрации;

Индукция. Основой взаимосвязи между нервными центрами является процесс индукции — наведение (индуцирование) противоположного процесса. Сильный процесс возбуждения в нервном центре вызывает (наводит) торможение в соседних нервных центрах (пространственная отрицательная индукция), а сильный тормозной процесс индуцирует в соседних нервных центрах возбуждение (пространственная положительная индукция). При смене этих процессов в пределах одного центра говорят о последовательной отрицательной или положительной индукции. Индукция ограничивает распространение (иррадиацию) нервных процессов и обеспечивает концентрацию. Способность к индукции в значительной степени зависит от функционирования тормозных вставочных нейронов — клеток Реншоу.

От степени развития индукции зависят подвижность нервных процессов, возможность выполнения движений скоростного характера, требующих быстрой смены возбуждения и торможения.

Индукция является основой доминанты — образования нервного центра повышенной возбудимости. Это явление впервые было описано А.А. Ухтомским. Доминантный нервный центр подчиняет себе более слабые нервные центры, притягивает их энергию и за счет этого еще более усиливается. В результате этого раздражение различных рецепторных полей начинает вызывать рефлекторный ответ, характерный для деятельности этого доминантного центра. Доминантный очаг в ЦНС может возникать под влиянием разных факторов, в частности сильной афферентной стимуляции, гормональных воздействий, мотиваций и т.д. (рис. 9);

Рис. 9. Формирование доминанты за счет пространственной отрицательной индукции.

Дивергенция и конвергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками в пределах одного или разных нервных центров называется дивергенциеи. Например, центральные окончания аксонов первичного афферентного нейрона образуют синапсы на многих вставочных нейронах. Благодаря этому одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, что приводит к иррадиации возбуждения.

Схождение различных путей проведения нервных импульсов к одному и тому же нейрону получило название конвергенции. Простейшим примером конвергенции является замыкание на одном двигательном нейроне импульсов от нескольких афферентных (чувствительных) нейронов. В ЦНС большинство нейронов получают информацию от разных источников благодаря конвергенции. Это обеспечивает пространственную суммацию импульсов и усиление конечного эффекта (рис. 10).

Рис. 10. Дивергенция и конвергенция

Явление конвергенции было описано Ч. Шеррингтоном и получило название воронки Шеррингтона, или эффекта общего конечного пути. Данный принцип показывает, как при активации различных нервных структур формируется конечная реакция, что имеет первостепенное значение для анализа рефлекторной деятельности;

Окклюзия и облегчение. В зависимости от взаимного расположения ядерных и периферических зон разных нервных центров может проявиться при взаимодействии рефлексов явление окклюзии (закупорки) или облегчения (суммации) (рис. 11).

Рис. 11. Окклюзия и облегчение

Если происходит взаимное перекрывание ядер двух нервных центров, то при раздражении афферентного поля первого нервного центра условно возникают два двигательных ответа. При активации только второго центра также возни каст два двигательных ответа. Однако при одновременной стимуляции обоих центров суммарный двигательный ответ равен только трем единицам, а не четырем. Это обусловлено тем, что один и тот же мотонейрон относится одновременно к обоим нервным центрам.

Если происходит перекрывание периферических отделов разных нервных центров, то при раздражении одного центра возникает одна ответная реакция, то же наблюдается и при раздражении второго центра. При одновременном возбуждении двух нервных центров возникает три ответных реакции. Потому что мотонейроны, находящиеся в зоне перекрывания и не дающие ответа при изолированном раздражении нервных центров, получают при одновременной стимуляции обоих центров суммарную дозу медиатора, что приводит к пороговому уровню деполяризации;

Утомляемость нервного центра. Нервный центр обладает малой лабильностью. Он постоянно получает от множества высоколабильных нервных волокон большое количество стимулов, превышающих его лабильность. Поэтому нервный центр работает с максимальной загрузкой и легко утомляется.

Исходя из синаптических механизмов передачи возбуждения утомление в нервных центрах может объясняться тем, что но мере работы нейрона истощаются запасы медиатора и становится невозможной передача импульсов в синапсах. Кроме того, в процессе деятельности нейрона наступает постепенное снижение чувствительности его рецепторов к медиатору, что называется десенситизацией;

Чувствительность нервных центров к кислороду и некоторым фармакологическим веществам. В нервных клетках осуществляется интенсивный обмен веществ, для чего необходимы энергия и постоянный приток нужного количества кислорода.

Особенно чувствительны к недостатку кислорода нервные клетки коры больших полушарий головного мозга, после пяти-шести минут кислородного голодания они погибают. У человека даже кратковременное ограничение мозгового кровообращения приводит к потере сознания. Недостаточное снабжение кислородом легче переносят нервные клетки мозгового ствола, их функция восстанавливается через 15-20 мин после полного прекращения кровоснабжения. А функция клеток спинного мозга восстанавливаются даже после 30 мин отсутствия кровообращения.

По сравнению с нервным центром нервное волокно малочувствительно к недостатку кислорода. Помешенное в атмосферу азота, оно только через 1,5 ч прекращает проведение возбуждения.

Нервные центры обладают специфической реакцией на различные фармакологические вещества, что свидетельствует об их специфичности и своеобразии протекающих в них процессов. Например, никотин, мускарин блокируют проведение импульсов в возбуждающих синапсах; их действие приводит к падению возбудимости, уменьшению двигательной активности и полному ее прекращению. Стрихнин, столбнячный токсин выключают тормозящие синапсы, что приводит к повышению возбудимости ЦНС и увеличению двигательной активности вплоть до общих судорог. Некоторые вещества блокируют проведение возбуждения в нервных окончаниях: кураре — в концевой пластинке; атропин — в окончаниях парасимпатической нервной системы. Есть вещества, действующие на определенные центры: апоморфин — на рвотный; лобелии — на дыхательный; кардиазол — на двигательную зону коры; мескалин — на зрительные центры коры и др.;

Пластичность нервных центров. Под пластичностью понимают функциональную изменчивость и приспособляемость нервных центров. Это особенно ярко проявляется при удалении разных отделов мозга. Нарушенная функция может восстанавливаться, если были частично удалены какие-то отделы мозжечка или коры больших полушарий. О возможности полной перестройки центров свидетельствуют опыты по сшиванию функционально различных нервов. Если перерезать двигательный нерв, иннервирующий мышцы конечностей, и его периферический конец сшить с центральным концом перерезанного блуждающего нерва, регулирующего внутренние органы, то через некоторое время периферические волокна двигательного нерва перерождаются (вследствие их отделения от тела клетки), а волокна блуждающего нерва прорастают к мышце. Последние образуют в мышце синапсы, свойственные соматическому нерву, что приводит к постепенному восстановлению двигательной функции. В первое время после восстановления иннервации конечности раздражение кожи вызывает свойственную блуждающему нерву реакцию — рвоту, гак как возбуждение от кожи по блуждающему нерву поступает в соответствующие центры продолговатого мозга. Через некоторое время раздражение кожи начинает вызывать обычную двигательную реакцию, поскольку происходит полная перестройка деятельности центра.

Эфферентное волокно

Эфферентные (центробежные) нервные волокна

Эфферентные (центробежные) нервные волокна — нервные волокна, по которым возбуждение передается от ЦНС (от клетки) к тканям. Эфферентные (центробежные) нервные волокна являются отростками эфферентных (двигательных) нейронов .

ЭФФЕКТОР

ЭФФЕКТОР (в физиологии) — конечный элемент рефлекторной дуги (мышца, железа), изменение состояния которого служит показателем осуществления рефлекса (напр., сокращение мышцы, выделение секрета железой). Возможно и нерефлекторное возбуждение эффектора (химическими веществами через кровь, лимфу).

в физиологии эффекторным органом часто называют исполнительный орган или орган-мишень воздействия, выполняющий те или иные «приказы» ЦНС или эндокринных желёз. Например, в случае рефлекторного отдёргивания руки от горячей плиты эффекторным органом является рука. В случае выброса в кровь АКТГ эффекторным органом является кора надпочечников. А в случае вызванного стрессом увеличения концентрации адреналина в плазме крови и увеличения потока импульсов симпатической стимуляции из ЦНС эффекторными органами являются все органы, имеющие симпатическую иннервацию или обладающие адренорецепторами (сердце, бронхи, мышцы и др.). Эффекторным концом (или эффекторным терминалом, эффекторным синапсом) называют дистальный конец аксона, с помощью которого нейрон непосредственно контактирует с органом или тканью, которые он стимулирует или ингибирует.

1 . Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга (последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение).

Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.

Рефлекторные дуги могут быть двух видов: простые – моносинаптические рефлекторные дуги; сложные – полисинаптические рефлекторные дуги.

Петля обратной связи – компонент, который устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.

Рефлекторная дуга по своему строению и назначению элементов представляет собой описанный выше контур регуляции. Она включает следующие звенья :

1) сенсорные рецепторы (датчики), воспринимающие стимулы внешней или внутренней среды,

2) афферентные, или чувствительные, нервные проводники (каналы сигналов входа),

3) нервные центры (аппарат управления), состоящие из афферентных, промежуточных, или вставочных, и эфферентных нейронов, т. е. получающих, обрабатывающих и выдающих информацию нервных клеток,

4) эфферентные, или двигательные, нервные проводники (каналы выхода),

5) эффекторы, или исполнительные органы (объекты управления).

Однако для оптимальности регуляции необходима информация о реакциях эффектора на управляющие сигналы, в связи с чем обязательным звеном рефлекторного акта является канал обратной связи. Таким образом, структурную основу рефлекса лучше называть не рефлекторной дугой, а рефлекторным кольцом.

Как они воплотят в жизнь работу совместно и их отличия?

Центростремительные нейроны зачастую обладают 2 аксона, какие предоставляют хим импульсы во иктидозавр бревно либо ведь разум. Вскрывшись далее, толчок пролетает через линия с нейронов также через передающий нервная клетка. Афферентно — передающие испарения нейронов, какие пролетают через позвоночный столб, распоряжаются рефлексами (подобными, равно как чувствительность коленчатого сенсора). Центростремительные нейроны адаптированы с целью реагирования в всевозможные раздражители. Ко образцу, центростремительный нервная клетка, приспособленный с целью чувствительности в теплота, разыскивает ненужное теплота также шлёт символ через основную нервную концепцию. Потом передающий нервная клетка вынуждает мышцы уменьшаться, чтобы потащить тело с парилки. Корка включает воспринимающие детекторы с целью тепла, холода, наслаждения, недомогай также давления. Центростремительные нейроны обладают округленные также шершавые клеточные туловища, передающие нейроны обладают спутниковые туловища. Центростремительные нейроны обладают один раз длинный миелинизированный агрегат, из-за данное период равно как передающие нейроны обладают наиболее краткие дендриты. Агрегат во центростремительном нейроне — данное в таком случае, непосредственно то что отвечает из-за передачу нервных импульсов с рецепторов ко телу клетки, во в таком случае период равно как во передающем нейроне импульсы пролетают через агрегат также высовываются через раздражительно-мускульное объединение, что формируется между эффекторами также аксоном.

Как они работают вместе и чем отличаются

Афферентные нейроны обычно имеют два аксона, которые передают электрохимические сигналы в позвоночный столб или мозг. Оказавшись там, сигнал проходит через сеть интернейронов и через эфферентный нейрон. Афферентно-эфферентные пары нейронов, которые проходят через позвоночник, управляют рефлексами (такими, как реакция коленного рефлекса).

Готовые работы на аналогичную тему

Курсовая работа Афферентные и эфферентные нервные проводники и их роль в психологии 430 ₽ Реферат Афферентные и эфферентные нервные проводники и их роль в психологии 230 ₽ Контрольная работа Афферентные и эфферентные нервные проводники и их роль в психологии 230 ₽

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Афферентные нейроны предназначены для реагирования на различные раздражители. Например, афферентный нейрон, предназначенный для реакции на тепло, обнаруживает избыточное тепло и посылает импульс через центральную нервную систему. Затем эфферентный нейрон заставляет мышцы сокращаться, чтобы отвести тело от жары. Кожа имеет сенсорные рецепторы для тепла, холода, удовольствия, боли и давления.

Афферентные нейроны имеют круглые и гладкие клеточные тела, в то время как эфферентные нейроны имеют спутниковые тела. Афферентные нейроны обнаруживаются в периферической нервной системе, а эфферентные нейроны располагаются в центральной нервной системе. Аксоны в афферентных нейронах движутся от ганглиев (скопление нервных клеток, в которых находятся афферентные и эфферентные нейроны) к спинному мозгу. Длинный аксон фактически связан с эфферентным нейроном.

Афферентные нейроны имеют один длинный миелинизированный дендрит, тогда как эфферентные нейроны имеют более короткие дендриты. Дендрит в афферентном нейроне — это то, что отвечает за передачу нервных импульсов от рецепторов к телу клетки, в то время как в эфферентном нейроне импульсы проходят через дендрит и выходят через нервно-мышечное соединение, которое образуется между эффекторами и аксоном.

Значение нейронов

Представление нейронов Пациенты со травмой дорсального мозга приобретают минус моторной также воспринимающей концепций. Непосредственно то что равно как один раз данное подразумевает со био места зрения?

Основная нервозная концепция включает основной также дорсальный разум. Периферическая нервозная концепция совершено с узы нейронов, что завертывает аппараты, мышцы также тело. Нейроны во 2-ух текстурах функционируют совместно, чтобы подсобить нам мыслить, приспособиться также воздействовать в галактика диапазоном нас. Нервозная концепция функционирует согласно нюансу ввода также заключения, чувствования также (пере) влияния. В Добром Здравии создания склонны ощущать, непосредственно, то что делается во их окруженье, также то что-нибудь формировать во результат в данное. Давай изучим простой образец: во случае в случае если авто скопится ахнуть вам, вам выскакиваете со трассы. Данное простое влияние труднее, нежели представляется. Глаза увидали авто, разум дал понял, непосредственно, то что данное опасно, также дать распоряжение ногам сброситься со трассы. Иной образец: во случае в случае если пламя свечки обжигает палец, индивид незамедлительно оттягиваете ладошку обратно. В Таком Случае имеется индивид сначала ощутил, но потом стал функционировать. Немаловажно принимать, непосредственно, то что нервозная концепция сплетена со активностью в целом организма. Ко образцу, некто любой период приобретает сведение об надёжном пребывании руки и ноги, никак не смотря в ее, сканируя разгиб также прогибание суставов также мышца. Данное ощущение важно с целью перемещения туловища, ко образцу, в период спорта, также в некоторых случаях его нарекут 6-ой чувством. Базируясь в этой бесконечной обратной взаимосвязи, нервозная концепция обладает вероятность корректировать активность организма, либо сознательно осознанно (движенье мускул), либо вынужденно (гемодинамика). Данным способом, во случае в случае если опорно-моторные (передающие) волокна разбиты, индивид никак не сумеет поднять ногу, из-за этого непосредственно, то что коллектив никак не будет переключаться с мозга ко мускулам во ноге. Во случае в случае если задеты воспринимающие (центростремительные) волокна, аппараты чувств никак не будут информировать разум, ко образцу, во случае в случае если он стукнет вам согласно ноге. В самый-самом процессе, уже после увечья дорсального мозга во основной массе повреждается очередность передающих также центростремительных волокон.

Замечание 1 Как рассказано в первую очередь, нервозная концепция способен рассматриваться равно как «структура закрытого цикла» эмоций, заключений также взаимодействий. Во обусловленности с проблемы взаимодействия также примененных мускульных компаний (элементов туловища), соучаствуют разнообразные степени основной нервозной текстуры. Во определенных факторах закрытый оборот никак не заламывает влияния более высоких степеней, подобных равно как разум. Центростремительные волокна кроме того прямо объединены со передающими волокнами. Коленчатый реакция, кроме того известный равно как реакция коленчатого рефлекса, считается хорошим примером. Данный обычный исследование, что многочисленные протекали в период медицинского медосмотра, устанавливает реакция, необходимый с целью поддерживания выправки также баланса, разрешая люду идти, никак не раздумывая об любом определенном шаге. Если чувствительность считается более сложной, необходимо влияние более высоких степеней основной нервозной концепции. К Примеру, вывод с автомашины: глаза отмечает авто также представляет данную сведение во разум. Затем разум формирует конкретный реакция (выскакивая во сторонку) также посылает должное психомоторное процесс мускулам. Подводя результат, возможно отметить, то что в таком случае, во тот или иной грани травмированы центростремительные также передающие волокна уже после травмы дорсального мозга, исчисляет, имеется единица около больных минус эмоции также держания позы либо управления мускулами.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]