ГЭБ или гематоэнцефалический барьер: его строение и значение

Гомеостаз ликворной системы и, в частности, ликвора поддерживается клеточными системами, которые образуют соответствующие барьеры.

Гематоэнцефалический барьер (ГЭБ) отождествляют с эндотелиальными клетками мозговых капилляров, а гематоликворный барьер (ГЛБ) — с эпителиальными клетками сосудистых сплетений и арахноидальных мембран. Многие авторы предпочитают термин «гематоэнцефалический барьер», включая в него гематоликворный.

Использование понятия «барьер» всегда требует уточнения состава обмена (вода, электролиты, микромолекулы, аминокислоты и др.).

Что такое ГЭБ?

Один из самых интересных и загадочных гистогематических барьеров – это гематоэнцефалический барьер, или преграда между капиллярной кровью и нейронами центральной нервной системы. Говоря современным, информационным языком, между капиллярами и веществом головного мозга существует полностью «защищенное соединение».

Смысл гематоэнцефалического барьера (аббревиатура – ГЭБ), состоит в том, что нейроны не вступают в непосредственный контакт с капиллярной сетью, а взаимодействуют с питающими капиллярами через «посредников». Этими посредниками являются астроциты, или клетки нейроглии.

Нейроглия – это вспомогательная ткань центральной нервной системы, которая выполняет множество функций, например опорную, поддерживая нейроны, и трофическую, питая их. В данном случае, астроциты непосредственно забирают из капилляра все, что нужно нейронам, и передают им. Одновременно они контролируют, чтобы в головной мозг не попали вредные и чужеродные вещества.

Таким образом, через гематоэнцефалический барьер не проходят не только различные токсины, но и многие лекарства, и это составляет предмет исследования современной медицины, поскольку с каждым днем количество препаратов, которые регистрируются для лечения заболеваний головного мозга, а также антибактериальных и противовирусных препаратов, все увеличивается.

Немного истории

Известный врач и микробиолог, Пауль Эрлих, стал мировой знаменитостью, благодаря изобретению сальварсана, или препарата № 606, который стал первым, пусть токсичным, но эффективным препаратом для лечения застарелого сифилиса. Это лекарство содержало мышьяк.

Но Эрлих также очень много экспериментировал с красителями. Он был уверен, что точно так же, как краситель плотно пристает к ткани (индиго, пурпур, кармин), он пристанет и к болезнетворному микроорганизму, стоит только найти такое вещество. Конечно, он должен не только прочно фиксироваться на микробной клетке, но и быть смертельным для микробов. Несомненно, «подлил масла в огонь» тот факт, что он женился на дочери известного и зажиточного фабриканта – текстильщика.

И Эрлих начал экспериментировать с различными и очень ядовитыми красками: анилиновыми и трипановыми.

Вскрывая лабораторных животных, он убеждался, что краситель проникает во все органы и ткани, но не имеет возможности диффундировать (проникать) в головной мозг, который оставался бледным.

Вначале его выводы были неверными: он предположил, что просто краситель не окрашивает мозг по причине того, что в нем много жира, и он отталкивает краску.

А затем открытия, предшествующие открытию гематоэнцефалического барьера, посыпались, как из рога изобилия, и сама идея стала постепенно оформляться в умах ученых. Наибольшее значение играли следующие эксперименты:

  • если ввести краситель внутривенно, то максимум, что он способен окрасить – это хориоидальные сосудистые сплетения желудочков головного мозга. Дальше ему «путь закрыт»;
  • если принудительно ввести краситель в ликвор, выполнив люмбальную пункцию, то мозг окрашивался. Однако, «наружу» из ликвора краситель не попадал, и остальные ткани оставались бесцветными.

После этого совершенно логично было предположено, что ликвор – это жидкость, которая находится «по ту сторону» преграды, главная задача которой – защитить центральную нервную систему.

Впервые термин ГЭБ появился в 1900 году, сто шестнадцать лет назад. В англоязычной медицинской литературе он именуется «blood-brain barrier», а в русском языке название привилось в виде «гематоэнцефалического барьера».

В дальнейшем этот феномен изучался достаточно подробно. Перед второй мировой войной появились данные о том, что есть гематоэнцефалический и гематоликворный барьер, а также есть гематоневральный вариант, который находится не в ЦНС, а расположен в периферических нервах.

История изучения гематоэнцефалического барьера

Paul Ehrlich
Изучение ГЭБ началось с работ Ehrlich, который в 1885 году ввел в вену краситель и не наблюдал окрашивание тканей мозга. Затем в 1909 году Goldman наблюдал появление красителя (трипанового синего) после его интратекального введения. Stern и Cautier в 1921 году ввели термины «гематоэнцефалический барьер» и «гематоликворный барьер». В последнее время этой проблеме посвящается большое количество работ. Fichman в 1980 году дает морфологическую, физиологическую и биохимическую характеристику ГЭБ.

Гематоэнцефалический барьер — характеристика по Fishman

  1. Морфологическая характеристика: Наличие здоровых контактов между капиллярными эндотелиальными клетками.
  2. Наличие здоровых контактов между клетками и арахноидальными мембранами.
  3. Глиальные отростки, окружающие капилляры.
  4. Небольшое число пиноцитозных везикул в эндотелиальных клетках.
  5. Многочисленные митохондрии в эндотелиальных клетках.
  • Физиологическая и биохимическая характеристика:
      Характеристика проницаемости эндотелиальных клеток: ограничено проникновение макромолекул и полярных (липидно нерастворимых) веществ, в то время как проникновение липиднорастворимых веществ относительно неограниченно.
  • Различия осмотического давления наблюдаются только короткое время, то есть осмотическое давление мозга и ликвора варьирует непосредственно с изменениями в плазменном осмотическом давлении.
  • Существует двусторонний активный транспорт через мембраны и эндотелиальные клетки для ионов, органических кислот, щелочей, которые стабилизируют состав ликвора и экстрацеллюлярной мозговой жидкости.

Строение и функции барьера

Именно от бесперебойной работы гематоэнцефалического барьера зависит наша жизнь. Ведь наш головной мозг потребляет пятую часть всего количества кислорода и глюкозы, и при этом его вес составляет не 20% всей массы тела, а около 2%, то есть потребление мозгом питательных веществ и кислорода в 10 раз выше среднего арифметического значения.

В отличие, например, от клеток печени, мозг работает только «на кислороде», и аэробный гликолиз — это единственный возможный вариант существования всех без исключения нейронов. В том случае, если в течение 10-12 секунд питание нейронов прекращается, то человек теряет сознание, а после остановки кровообращения, находясь в состоянии клинической смерти, шансы на полное восстановление функции мозга существуют только на протяжении 5 -6 минут.

Это время увеличивается при сильном охлаждении организма, но при нормальной температуре тела окончательная гибель мозга происходит через 8-10 минут, поэтому только интенсивная деятельность ГЭБ позволяет нам быть «в форме».

Известно, что многие неврологические заболевания развиваются только вследствие того, что нарушена проницаемость гематоэнцефалического барьера, в сторону его повышения.

Мы не будем подробно вдаваться в гистологию и биохимию структур, составляющих барьер. Отметим только лишь, что строение гематоэнцефалического барьера включает в себя особую структуру капилляров. Известны следующие особенности, приводящие к появлению барьера:

  • плотные контакты между эндотелиальными клетками, выстилающими капилляры изнутри.

В других органах и тканях эндотелий капилляров выполнен «небрежно», и между клетками есть большие промежутки, через которые происходит свободный обмен тканевой жидкостью с периваскулярным пространством. Там, где капилляры формируют гематоэнцефалический барьер, клетки эндотелия расположены очень плотно, и герметичность не нарушается;

  • энергетические станции – митохондрии в капиллярах превышает физиологическую потребность в таковых в других местах, поскольку гематоэнцефалический барьер требует больших затрат энергии;
  • высота клеток эндотелия существенно ниже, чем в сосудах другой локализации, а количество транспортных ферментов в цитоплазме клетки значительно выше. Это позволяет отвести большую роль трансмембранному цитоплазматическому транспорту;
  • эндотелий сосудов в своей глубине содержит плотную, скелетообразующую базальную мембрану, к которой снаружи прилегают отростки астроцитов;

Кроме особенностей эндотелия, снаружи от капилляров существуют особые вспомогательные клетки – перициты. Что такое перицит? Это клетка, которая может снаружи регулировать просвет капилляра, а при необходимости может обладать функциями макрофага, к захвату и уничтожению вредных клеток.

Поэтому, еще не дойдя до нейронов, мы можем отметить две линии защиты гематоэнцефалического барьера: первая – это плотные соединения эндотелиоцитов и активный транспорт, а вторая – это макрофагальная активность перицитов.

Далее гематоэнцефалический барьер включает в себя большое количество астроцитов, которые и составляют наибольшую массу этой гистогематической преграды. Это небольшие клетки, которые окружают нейроны, и, по определению их роли, умеют «почти всё».

Они постоянно обмениваются веществами с эндотелием, контролируют сохранность плотных контактов, активность перицитов и просвет капилляров. Кроме того, головному мозгу нужен холестерин, но он не может проникнуть из крови ни в ликвор, ни пройти сквозь гематоэнцефалический барьер. Поэтому астроциты берут на себя его синтез, помимо основных функций.

Кстати, одним из факторов патогенеза рассеянного склероза является нарушение миелинизации дендритов и аксонов. А для образования миелина нужен холестерин. Поэтому роль дисфункции ГЭБ в развитии демиелинизирующих заболеваний является установленной, и в последнее время изучается.

Там, где нет барьеров

А есть ли такие места в центральной нервной системе, где не существует гематоэнцефалического барьера? Казалось бы, это невозможно: столько трудов было приложено к тому, чтобы создать несколько уровней защиты от внешних вредных веществ. Но, оказывается, в некоторых местах ГЭБ не составляет единую «стену» защиты, а нем имеются отверстия. Они нужны для тех веществ, которые вырабатываются головным мозгом и отправляются на периферию в качестве команд: это гормоны гипофиза. Поэтому есть свободные участки, как раз в зоне гипофиза, и эпифиза. Они существуют, чтобы гормоны и нейротрансмиттеры могли свободно проникать в кровь.

Существует и другая зона, свободная от ГЭБ, которая находится в районе ромбовидной ямки или дна 4 желудочка головного мозга. Там находится рвотный центр. Известно, что рвота может возникать не только вследствие механического раздражения задней стенки глотки, но и при наличии токсинов, попавших в кровь. Поэтому именно в этой области и существуют особые нейроны, которые постоянно производят «мониторинг» качества крови на наличие вредных веществ.

Как только их концентрация достигнет определенной величины, эти нейроны активируются, вызывая чувство тошноты, а затем и рвоту. Справедливости ради нужно сказать, что не всегда рвота связана с концентрацией вредных веществ. Иногда, при значительном повышении внутричерепного давления (при гидроцефалии, менингитах) рвотный центр активируется вследствие прямого избыточного давления при развитии синдрома внутричерепной гипертензии. Поэтому развивается так называемая центральная, или мозговая рвота, которая может наступить внезапно, и без всяких признаков тошноты.

Проницаемость гематоэнцефалического барьера

Не для всех видов молекул гематоэнцефалический барьер проницаем одинаково. Это доказано при интравенозном введении металлофермента пероксидазы хрена (М 43000), сахарозы (М 360), инсулина (М 5000) и альбумина (М 69000). Межклеточные уплотненные контакты не пропускают пероксидазы хрена. Проницаемость перечисленных выше веществ почти обратно пропорциональна их молекулярной массе. Относительно высокое содержание альбумина по сравнению с гамма-глобулином в ликворе можно объяснить действием диффузии и везикулярного транспорта. Если эти белки переносятся только путем везикулярного транспорта, то масса молекулы не должна была бы иметь значения. Поэтому Раппопорт допускает существование двух видов транспорта белковых молекул:

  • пиноцитоз для молекул размером 25 нм;
  • диффузия и ультрафильтрация через клеточные поры для молекул размером 11 нм, то есть мелкомолекулярных белков.

Таким образом, проницаемость плазматического вещества в ликвор зависит от:

  • перечисленных выше особенностей ГЭБ по Fishman;
  • липидорастворимости, то есть является молекула полярной или нет;
  • ионизированности вещества;
  • молекулярной массы молекулы;
  • гидродинамического радиуса молекулы (радиус Stokes-Enstein);
  • способности образования комплексов с другими протеинами, гликопротеинами, липидами, неорганическими веществами и др.;
  • концентрация плазмы и плазмоликворного градиента.

Низкая концентрация белков в ликворе обусловлена свойством гематоэнцефалического барьера не пропускать некоторые макромолекулы. Таким образом, ГЭБ в отношении белков действует как сито. Однако концентрация некоторых белков (преальбумина, трансферрина и др.) выше той, которую следовало бы ожидать, принимая во внимание массу молекул и концентрацию плазмы.

Гематоэнцефалический барьер отражает время эквилибрирования отдельных соединений между двумя сравниваемыми жидкостями: кровь и ликвор. Алкоголь и вода свободно проникают через ГЭБ, соответственно 97 и 93 %. Двуокись углерода и кислород вследствие хорошей растворимости в липидах, быстро проникают через гематоэнцефалический барьер, в то время как растворимые в воде полярные соединения (например, ионы бикарбонатов) с трудом проходят через него, если отсутствуют специальные для них транспортные системы. Соединение части ионов кальция и магния с альбуминами плазмы объясняет, почему в ликвор проникают только ионизированные соединения и значительно ограничено проникновение связанных с белками фракций.

Состояние гематоэнцефалического барьера имеет значение для проникновения и задержания данного лекарства. Множество факторов (степень ионизации, pH среды, размер и пространственная конфигурация молекул и т.д.) в значительной степени определяют его проходимость. Растворимый в липидах эфир, хлороформ и алкоголь быстро проникают через ГЭБ, тогда как ионизированные полярные лекарства почти не проникают. Лекарства, которые являются кислотами или щелочами, обнаруживаются в плазме в ионизированной и неионизированной форме в различных пропорциях. Процентное содержание каждой из этих форм зависит от pH крови и константы диссоциации лекарства. При pH крови 7,40 и ликвора 7,32 гематоэнцефалический барьер легко пропускает слабые щелочи. Очень высокая концентрация последних в ликворе увеличивает содержание слабых кислот в крови. Например, пенициллин плохо проникает в ликвор даже в высоких терапевтических дозах из-за плохой растворимости в липидах. После соединения с альбумином плазмы пенициллин активно транспортируется через сплетения. Это в известной степени действительно и для метотрексата, долго действующих барбитуратов и других препаратов.

В заключение можно сказать, что гематоэнцефалический барьер (ГЭБ) и ликвор являются системой, которая поддерживает гомеостаз в ЦНС. Облегчает проникновение в нее необходимых веществ, и задерживает токсины ненужных метаболитов.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]